Lecture 01: Pigeonhole Principle

Pigeonhole Principle

Theorem (PHP)

For any placement of $(k n+1)$ pigeons in n holes, there exists a hole with at least $(k+1)$ pigeons.

Monochromatic Triangles in 2-Colorings

Theorem

Any 2-coloring of K_{6} contains a monochromatic triangle.

- If possible let there exists a 2-coloring of K_{6} that contains no monochromatic triangles
- Consider any vertex v in K_{6}
- There are 5 edges in K_{6} that are incident on v
- By PHP, at least 3 of them have the same color
- Let edges $(v, a),(v, b)$ and (v, c) are colored red
- Now, (a, b) must be colored blue (otherwise $\{v, a, b\}$ forms a monochromatic triangle)
- Similarly, (b, c) and (c, a) must be colored blue
- Then, $\{a, b, c\}$ forms a monochromatic triangle
- Hence, contradiction
- Think: Give a 2-coloring of K_{5} that has no monochromatic triangles

Theorem

Any 2-coloring of K_{6} contains 2 monochromatic triangles.

- Define: A biangle centered at b is a set $\{a, b, c\}$ such that the edge (a, b) and (b, c) has different colors
- If possible, consider a coloring of K_{6} with at most 1 monochromatic triangle
- There are $\binom{6}{3}=20$ triangles in K_{6}
- A monochromatic triangle has 0 biangles
- A non-monochromatic triangle has 2 biangles
- This coloring has at least $20-1=19$ non-monochromatic triangles and, hence, at least 38 biangles

Proof Continued...

- By PHP, there exists a vertex v such that it has at least 7 biangles centered at v
- But in K_{6}, any vertex either has 0,4 or 6 biangles centered at it
- Hence, contradiction
- Think: Construct a 2 -coloring for K_{6} that has exactly 2 monochromatic triangles
- Think: Prove that any 2 -coloring of K_{7} has at least 4 monochromatic triangles

Stepping Stone to Ramsey Theory

- Previous results are stepping stones to Ramsey Theory
- A Mathematical Gem:

Theorem (Van der Waerden Theorem)

For any r, k, there exists n such that any r-coloring of $\{1, \ldots, n\}$ has a monochromatic arithmetic progression of length k.

Erdös-Szekeres theorem

Theorem (Erdös-Szekeres Theorem)

Any set of distinct numbers $\left\{a_{1}, \ldots, a_{n}\right\}$ contains either an increasing subsequence of length $(a+1)$ or a decreasing subsequence of length $(b+1)$, where $n=a b+1$.

- Define the mapping $a_{i} \mapsto\left(u_{i}, v_{i}\right)$, where
- u_{i} is the length of the longest increasing subsequence in $\left\{a_{1}, \ldots, a_{i}\right\}$ that includes a_{i}, and
- v_{i} is the length of the longest decreasing subsequence in $\left\{a_{1}, \ldots, a_{i}\right\}$ that includes a_{i}.
- Suppose $\left\{a_{1}, \ldots, a_{n}\right\}$ has increasing subsequences of length at most a and decreasing subsequences of length at most b
- So, for all $i \in[n]$, we have $1 \leqslant u_{i} \leqslant a$ and $1 \leqslant v_{i} \leqslant b$
- There are at most $a b$ distinct possible tuples $\left(u_{i}, v_{i}\right)$
- By PHP, there exists $i<j$ such that $\left(u_{i}, v_{i}\right)=\left(u_{j}, v_{j}\right)$

Erdös-Szekeres theorem

Proof Continued...

- If $a_{j}>a_{i}$ then $u_{j}>u_{i}$ (consider the longest increasing subsequence in $\left\{a_{1}, \ldots, a_{i}\right\}$ that ends in a_{i} and append a_{j} to it)
- If $a_{j}<a_{i}$ then $v_{j}>v_{i}$ (similarly)
- Therefore, it is not possible for $\left(u_{i}, v_{i}\right)=\left(u_{j}, v_{j}\right)$, for $i<j$
- Hence, contradiction
- Think: (Tightness) Construct a set of $a b$ elements that has increasing subsequences of length at most a and decreasing subsequences of length at most b

Application

Let S_{n} be the set of all permutations of the set [n]. The expression $\pi \stackrel{\Phi}{\leftarrow} S_{n}$ represents a permutation drawn uniformly at random from S_{n}. Let $\operatorname{inc}(\pi)$ denote the length of the longest increasing subsequence in the permutation π.

Theorem

$$
\underset{\pi \Vdash \subseteq}{\mathbb{E} S_{n}}[\operatorname{inc}(\pi)] \geqslant \frac{\sqrt{n-1}}{2}+1
$$

- Note that π either has an increasing or decreasing subsequence of length $\sqrt{n-1}+1$
- So, π or reverse of π has an increasing sequence of length at least $\sqrt{n-1}+1$
- The other of the two permutations has an increasing sequence of length at least 1
- So, the expected length of the longest increasing sequence over π and reverse of π is $\frac{\sqrt{n-1}}{\rho}+1$

Lecture 01: Pigeonhole Principle
(1) Think: Prove $\mathbb{E}_{\pi \leftrightarrow S_{n}}[\operatorname{inc}(\pi)]=\Theta(\sqrt{n})$
(2) Think: How does the distribution $\operatorname{inc}(\pi)$ look, for $\pi \stackrel{\S}{\leftarrow} S_{n}$?
(3) Think: How to show that the distribution is strongly concentrated around its mean with variance $\approx n^{1 / 4}$?

PHP as Probability

Let M be a matrix. Let $M(r, c) \in[0, \infty)$ be the entry corresponding to the row r and column c. Let R and C be some distribution over the rows and columns respectively. The expression $r \sim R$ represents that the row r is drawn according to the distribution R and the expression $c \sim C$ represents that the column c is drawn according to the distribution C.

Theorem

Suppose

$$
\underset{\substack{r \sim R \\ c \sim C}}{\mathbb{E}}[M(r, c)] \leqslant \varepsilon
$$

If $\varepsilon=\alpha \beta$ then,

$$
\operatorname{Pr}_{c \sim C}[\underset{r \sim R}{\mathbb{E}}[M(r, c)] \geqslant \alpha] \leqslant \beta
$$

- Think: Prove it
- Think: How our first PHP is a sdecial case of this?

