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Pigeonhole Principle

Theorem (PHP)

For any placement of (kn + 1) pigeons in n holes, there exists a
hole with at least (k + 1) pigeons.
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Monochromatic Triangles in 2-Colorings

Theorem
Any 2-coloring of K6 contains a monochromatic triangle.

If possible let there exists a 2-coloring of K6 that contains no
monochromatic triangles
Consider any vertex v in K6

There are 5 edges in K6 that are incident on v

By PHP, at least 3 of them have the same color
Let edges (v , a), (v , b) and (v , c) are colored red
Now, (a, b) must be colored blue (otherwise {v , a, b} forms a
monochromatic triangle)
Similarly, (b, c) and (c , a) must be colored blue
Then, {a, b, c} forms a monochromatic triangle
Hence, contradiction
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Tightness

Think: Give a 2-coloring of K5 that has no monochromatic
triangles

Theorem
Any 2-coloring of K6 contains 2 monochromatic triangles.

Define: A biangle centered at b is a set {a, b, c} such that the
edge (a, b) and (b, c) has different colors
If possible, consider a coloring of K6 with at most 1
monochromatic triangle

There are
(
6
3

)
= 20 triangles in K6

A monochromatic triangle has 0 biangles
A non-monochromatic triangle has 2 biangles
This coloring has at least 20− 1 = 19 non-monochromatic
triangles and, hence, at least 38 biangles

Lecture 01: Pigeonhole Principle



Tightness

Proof Continued...
By PHP, there exists a vertex v such that it has at least 7
biangles centered at v
But in K6, any vertex either has 0, 4 or 6 biangles centered at
it
Hence, contradiction

Think: Construct a 2-coloring for K6 that has exactly 2
monochromatic triangles
Think: Prove that any 2-coloring of K7 has at least 4
monochromatic triangles
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Stepping Stone to Ramsey Theory

Previous results are stepping stones to Ramsey Theory
A Mathematical Gem:

Theorem (Van der Waerden Theorem)

For any r , k , there exists n such that any r -coloring of {1, . . . , n}
has a monochromatic arithmetic progression of length k .
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Erdös–Szekeres theorem

Theorem (Erdös–Szekeres Theorem)

Any set of distinct numbers {a1, . . . , an} contains either an
increasing subsequence of length (a + 1) or a decreasing
subsequence of length (b + 1), where n = ab + 1.

Define the mapping ai 7→ (ui , vi ), where
ui is the length of the longest increasing subsequence in
{a1, . . . , ai} that includes ai , and
vi is the length of the longest decreasing subsequence in
{a1, . . . , ai} that includes ai .

Suppose {a1, . . . , an} has increasing subsequences of length at
most a and decreasing subsequences of length at most b
So, for all i ∈ [n], we have 1 6 ui 6 a and 1 6 vi 6 b

There are at most ab distinct possible tuples (ui , vi )

By PHP, there exists i < j such that (ui , vi ) = (uj , vj)
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Erdös–Szekeres theorem

Proof Continued...
If aj > ai then uj > ui (consider the longest increasing
subsequence in {a1, . . . , ai} that ends in ai and append aj to
it)
If aj < ai then vj > vi (similarly)
Therefore, it is not possible for (ui , vi ) = (uj , vj), for i < j

Hence, contradiction

Think: (Tightness) Construct a set of ab elements that has
increasing subsequences of length at most a and decreasing
subsequences of length at most b
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Application

Let Sn be the set of all permutations of the set [n]. The expression
π

$← Sn represents a permutation drawn uniformly at random from
Sn. Let inc(π) denote the length of the longest increasing
subsequence in the permutation π.

Theorem

E
π

$←Sn

[inc(π)] >

√
n − 1
2

+ 1

Note that π either has an increasing or decreasing subsequence
of length

√
n − 1 + 1

So, π or reverse of π has an increasing sequence of length at
least

√
n − 1 + 1

The other of the two permutations has an increasing sequence
of length at least 1
So, the expected length of the longest increasing sequence
over π and reverse of π is

√
n−1
2 + 1
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Food for Thought

1 Think: Prove E
π

$←Sn
[inc(π)] = Θ

(√
n
)

2 Think: How does the distribution inc(π) look, for π $← Sn?
3 Think: How to show that the distribution is strongly

concentrated around its mean with variance ≈ n1/4?
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PHP as Probability

Let M be a matrix. Let M(r , c) ∈ [0,∞) be the entry
corresponding to the row r and column c . Let R and C be some
distribution over the rows and columns respectively. The expression
r ∼ R represents that the row r is drawn according to the
distribution R and the expression c ∼ C represents that the column
c is drawn according to the distribution C .

Theorem
Suppose

E
r∼R
c∼C

[M(r , c)] 6 ε

If ε = αβ then,

Pr
c∼C

[
E

r∼R
[M(r , c)] > α

]
6 β

Think: Prove it
Think: How our first PHP is a special case of this?
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