Lecture 01: Pigeonhole Principle

Lecture 01: Pigeonhole Principle

▲圖▶ ▲ 国▶ ▲ 国▶

э

Theorem (PHP)

For any placement of (kn + 1) pigeons in n holes, there exists a hole with at least (k + 1) pigeons.

Lecture 01: Pigeonhole Principle

イロト イポト イヨト イヨト

Monochromatic Triangles in 2-Colorings

Theorem

Any 2-coloring of K_6 contains a monochromatic triangle.

- If possible let there exists a 2-coloring of K_6 that contains no monochromatic triangles
- Consider any vertex v in K_6
- There are 5 edges in K_6 that are incident on v
- By PHP, at least 3 of them have the same color
- Let edges (v, a), (v, b) and (v, c) are colored red
- Now, (*a*, *b*) must be colored blue (otherwise {*v*, *a*, *b*} forms a monochromatic triangle)
- Similarly, (b, c) and (c, a) must be colored blue
- Then, $\{a, b, c\}$ forms a monochromatic triangle
- Hence, contradiction

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Think: Give a 2-coloring of K₅ that has no monochromatic triangles

Theorem

Any 2-coloring of K₆ contains 2 monochromatic triangles.

- Define: A *biangle centered at b* is a set $\{a, b, c\}$ such that the edge (a, b) and (b, c) has different colors
- If possible, consider a coloring of *K*₆ with at most 1 monochromatic triangle
- There are $\begin{pmatrix} 6\\ 3 \end{pmatrix} = 20$ triangles in K_6
- A monochromatic triangle has 0 biangles
- A non-monochromatic triangle has 2 biangles
- This coloring has at least 20 1 = 19 non-monochromatic triangles and, hence, at least 38 biangles

Proof Continued...

- By PHP, there exists a vertex v such that it has at least 7 biangles centered at v
- But in K_6 , any vertex either has 0, 4 or 6 biangles centered at it
- Hence, contradiction

- Think: Construct a 2-coloring for *K*₆ that has exactly 2 monochromatic triangles
- Think: Prove that any 2-coloring of K₇ has at least 4 monochromatic triangles

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Previous results are stepping stones to Ramsey Theory
- A Mathematical Gem:

Theorem (Van der Waerden Theorem)

For any r, k, there exists n such that any r-coloring of $\{1, ..., n\}$ has a monochromatic arithmetic progression of length k.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Theorem (Erdös–Szekeres Theorem)

Any set of distinct numbers $\{a_1, \ldots, a_n\}$ contains either an increasing subsequence of length (a + 1) or a decreasing subsequence of length (b + 1), where n = ab + 1.

- Define the mapping $a_i \mapsto (u_i, v_i)$, where
 - u_i is the length of the longest increasing subsequence in $\{a_1, \ldots, a_i\}$ that includes a_i , and
 - v_i is the length of the longest decreasing subsequence in $\{a_1, \ldots, a_i\}$ that includes a_i .
- Suppose {a₁,..., a_n} has increasing subsequences of length at most a and decreasing subsequences of length at most b
- So, for all $i \in [n]$, we have $1 \leq u_i \leq a$ and $1 \leq v_i \leq b$
- There are at most *ab* distinct possible tuples (u_i, v_i)
- By PHP, there exists i < j such that $(u_i, v_i) = (u_j, v_j)$

Proof Continued...

- If a_j > a_i then u_j > u_i (consider the longest increasing subsequence in {a₁,..., a_i} that ends in a_i and append a_j to it)
- If $a_j < a_i$ then $v_j > v_i$ (similarly)
- Therefore, it is not possible for $(u_i, v_i) = (u_j, v_j)$, for i < j
- Hence, contradiction

• Think: (Tightness) Construct a set of *ab* elements that has increasing subsequences of length at most *a* and decreasing subsequences of length at most *b*

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application

Let S_n be the set of all permutations of the set [n]. The expression $\pi \stackrel{s}{\leftarrow} S_n$ represents a permutation drawn uniformly at random from S_n . Let $inc(\pi)$ denote the length of the longest increasing subsequence in the permutation π .

Theorem

$$\mathbb{E}_{\substack{ \bullet : \mathfrak{s} \\ \mathsf{s} \\ \mathsf{s} }} [\operatorname{inc}(\pi)] \ge \frac{\sqrt{n-1}}{2} + 1$$

 π

- Note that π either has an increasing or decreasing subsequence of length $\sqrt{n-1}+1$
- So, π or reverse of π has an increasing sequence of length at least $\sqrt{n-1}+1$
- The other of the two permutations has an increasing sequence of length at least 1
- So, the expected length of the longest increasing sequence over π and reverse of π is $\frac{\sqrt{n-1}}{2} + 1$

- Think: Prove $\mathbb{E}_{\pi \leftarrow S_n} [\operatorname{inc}(\pi)] = \Theta(\sqrt{n})$
- 2 Think: How does the distribution $inc(\pi)$ look, for $\pi \stackrel{s}{\leftarrow} S_n$?
- Think: How to show that the distribution is strongly concentrated around its mean with variance $\approx n^{1/4}$?

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

PHP as Probability

Let *M* be a matrix. Let $M(r, c) \in [0, \infty)$ be the entry corresponding to the row *r* and column *c*. Let *R* and *C* be some distribution over the rows and columns respectively. The expression $r \sim R$ represents that the row *r* is drawn according to the distribution *R* and the expression $c \sim C$ represents that the column *c* is drawn according to the distribution *C*.

Theorem	
Suppose	
	$\mathbb{E}_{\substack{r\sim R\\c\sim C}}[M(r,c)]\leqslant \varepsilon$
	c~C
If $\varepsilon = lpha eta$ then,	
	$\Pr_{\boldsymbol{c}\sim \boldsymbol{C}}\left[\underset{\boldsymbol{r}\sim \boldsymbol{R}}{\mathbb{E}} \left[\boldsymbol{M}(\boldsymbol{r},\boldsymbol{c}) \right] \geq \alpha \right] \leq \beta$

- Think: Prove it
- Think: How our first PHP is a special case of this?